[image: image1.png]INSTANCE ZEROES

TOP | ALGONAME K PADDING 512 ZEROES
Keccak

TOP,

INSTANCE RAND SQN

TOP; | ALGONAME | AMF PADDING

Sl

X

512 ZEROES

l

Keccak

MAC

INSTANCE RAND

TOP; [ALGONAME |ZEROES K PADDING 512 ZEROES
Keccak

RES CK IK AK

3GPP TSG SA Meeting #62
TD SP-130602
Busan, South Korea, 09 - 11 December, 2013

ETSI SAGE
SAGE (13) 10
29 November 2013
Title:
TUAK design rationale
Response to:

Source:
ETSI SAGE

To:
3GPP SA3
Cc:
3GPP SA
Contact Person:

Name:
Steve Babbage

Tel. Number:
+ 44 7787 153932

E-mail Address:
steve.babbage@vodafone.com

Attachments:
None
SAGE has delivered specifications for the new TUAK algorithm to SA3. TUAK is built on top of the well known public hash function called Keccak – precisely the same Keccak that has been through several years of public scrutiny, and determined to have an extremely high margin of security against all known attacks, before being selected as the winner of NIST’s competition to find the new SHA-3 standard. We use Keccak exactly as originally specified, and benefit directly from all of its existing security analysis.

TUAK is an authentication and key agreement algorithm, created as an alternative to Milenage. This new algorithm can be used by any operator, and would provide an immediate alternative choice were Milenage ever to be compromised. In particular, TUAK is aimed at the embedded UICC, where it may be sensible to have two strong algorithms installed on the platform and available for selection by subsequently loaded USIM applications. This provides choice to operators; it also provides resilience against future cryptanalysis of either algorithm, in devices that may have a long lifetime in the field.

We have been advised that SA3 would like to understand the rationale behind the design and evaluation of TUAK. This liaison statement briefly outlines this rationale.
Brand new design, or design based on an existing public algorithm?

For obvious reasons of confidence in the design – both SAGE’s confidence and the public’s confidence – we preferred to base the new authentication and key agreement algorithm on a well studied existing public algorithm.

Block cipher, stream cipher, MAC or hash function?

We need to take a symmetric key or keyless algorithm as the starting point. Public key algorithms are not suitable.

Stream ciphers would be a poor fit here – they typically need a pre-run before output can be extracted, making them expensive for short data sizes, even though they may be very efficient for large quantities of data. And there are no dedicated MAC functions (as opposed to e.g. block ciphers in a MAC mode) with enough public trust. So, realistically, the candidate building blocks are block ciphers or hash functions.
At first glance, block ciphers might seem a more natural starting point, since it might be possible to slot them directly into the Milenage framework, in place of AES. But when we looked at the obvious choices of well established public domain block ciphers, we found that they all had limitations:
· CAMELLIA, SERPENT and ARIA all seem too close to AES – if an advance in cryptanalytic theory threatens AES, we thought it was too likely that it would threaten these algorithms too. One of our fundamental design goals was to avoid this.

· IDEA, SEED and TEA / XTEA don’t support a 256-bit key. We wanted our design to accommodate a 256-bit key, since LTE allows that.

· CAST, CLEFIA and RC6 seemed to be encumbered with IPR. We preferred to choose a building block that was open for public use without IPR considerations.

· BLOWFISH and TWOFISH use key dependent S-boxes, which we felt were likely to add implementation or computational overheads.

· MARS was felt by many commentators during the AES competition not to be well suited for smart card implementation.
Note that there is no need for any decryption process as part of the authentication and key agreement algorithm. A one-way function, such as a hash function, is fine for this purpose.

So we determined on a hash function as the best type of building block to use.
Which hash function?

We wanted a hash function that was well studied, reasonably efficient, and appeared to have a good security margin. When we began the design process, the SHA-3 competition was still under way, with five finalists selected (BLAKE, Grøstl, JH, Keccak and Skein); the other natural candidate was SHA-2. Grøstl was quickly dismissed as being too close to AES. Once Keccak was selected as the SHA-3 winner, however, it would have been perverse to choose any of the other SHA-3 finalists without a clear reason to do so, and we had no such clear reason – Keccak seemed an excellent candidate for our purposes. So, our choice was between Keccak and SHA-2.
Either of Keccak or SHA-2 would have been a good choice for our building block. Referring back to our reasons for rejecting various block ciphers, we noted that both Keccak and SHA-2 are very different from AES in their designs; can easily accommodate a 256-bit key; are believed to be IPR-free; and could be reasonably compact and efficient on smartcard platforms. There were arguments in favour of each:
· SHA-2 had been in the public eye for longer. However, Keccak was more intensively scrutinised during the SHA-3 competition.

· More implementations were available for SHA-2.

· Keccak could become a particular focus for attack after being announced as the SHA-3 winner.

· Keccak’s recommended MAC construction is simpler and more efficient than the HMAC construction that would normally be used to create a MAC from SHA-2. (Simpler MAC constructions are possible for SHA-2, and would in practice be fine for our purposes … but would be less well trusted than HMAC.)

· There were already publications showing how to realise Keccak in a way that protects against side channel attacks, with a modest implementation overhead. Protecting SHA-2 against side channel attacks seemed less straightforward, and the complexity of doing so less clear. Side channel attacks are of course very important for USIM-based authentication and key agreement algorithms.
· Although both SHA-2 and Keccak currently seem to have a good security margin, the design philosophy and security arguments for Keccak are significantly clearer.

· The large input and output size of the Keccak permutation allow a very simple, one-round construction.

We took the opportunity to canvas the opinion of a number of eminent symmetric cryptography specialists, at the Early Symmetric Crypto conference (ESC 2013, https://www.cryptolux.org/mediawiki-esc2013/index.php/ESC_2013). A substantial majority expressed a preference for Keccak as the more robust choice with the sounder security justification (and that’s true even when we exclude the Keccak designers who were there …).
What sort of Keccak function to use
Keccak is a family of “cryptographic sponge functions” (see http://www.noekeon.org for more information). Each instance of Keccak has a particular permutation at its core. The SHA-3 submission takes a particular permutation from this family, and proposes a hash function based on the sponge paradigm.

We could have waited for the SHA-3 standard to be published, and used SHA-3 in its entirety as a building block for TUAK. There might have been some advantage in doing so, in terms of public trust in our design. This would have entailed a long delay, however (NIST has still not yet published SHA-3, more than a year after announcing Keccak as the winner). Moreover, using the exact input/output interface of SHA-3 would probably make our design significantly more complicated than it needed to be. We decided instead to base our design on the Keccak sponge function, which in practice is what provides all the security assurance for SHA-3.
Keccak parameter selection
Keccak permutations are available in seven different sizes, operating on blocks of 25, 50, 100, 200, 400, 800 or 1600 bits. For the sizes of input and output parameters we needed, 800-bit or 1600-bit block sizes were the only two worthy of consideration.
Once a block size B is chosen, there are two further parameters in the choice of Keccak function, called the rate R and the capacity C, with the constraint that R + C = B. The capacity C is a security parameter: to achieve 256-bit security against all attacks (reflecting the maximum subscriber key size of 256 bits in LTE), it’s necessary to choose a capacity of at least 2 x 256 = 512. The rate R indicates how many bits of input can be fed into each instance of the permutation, and how many bits of output can be extracted from each instance of the permutation.
With a 1600-bit block size B, we can have a rate R of up to 1600 – 512 = 1088 bits; this is easily enough to accommodate all the inputs and outputs we want from each TUAK function in a single Keccak permutation instance. With an 800-bit block size B, however, we could at most have a rate R of 800 – 512 = 288 bits; this would mean that several Keccak permutation iterations would be needed to accommodate all the inputs and outputs we require. So, while the 800-bit block size might naïvely seem more efficient than the 1600-bit size, in practice this would not be the case.
Another clear argument in favour of the 1600-bit permutation block size is that this is what will be used in SHA‑3. Choosing a smaller block size would risk unfavourable comparison with SHA-3, and a public impression that TUAK was not as secure as it could have been. It is also true that using the same block size as SHA-3 makes it more likely that implementations developed for the NIST standards can be largely reused for TUAK.
For these reasons we selected the 1600-bit permutation size for Keccak. Being able to accommodate all inputs and outputs in a single Keccak permutation means that we can have a rather simpler construction than was necessary for Milenage, where the basic building block was a 128-bit block cipher.
The largest set of inputs or outputs we wanted to deal with in a single TUAK function was 816 bits in total, implying that we should choose a rate R ≥ 816 for greatest efficiency. We could, therefore, have chosen C up to 784. After a brief discussion with the Keccak design team (who were very helpful and responsive throughout our design process), we decided to choose C = 512, for close alignment with the forthcoming NIST standards. Setting C = 512 means that the “rightmost” 512 input bits of each 1600-bit Keccak input block are always set to zero, and that no TUAK output bits are ever extracted from the “rightmost” 512 bits of the 1600-bit Keccak permutation output. (See the diagram reproduced from the algorithm specification document at the end of this liaison statement.)
However, we can argue that in practice we have an effective capacity of at least 768 bits – see section 3.2 of the TUAK algorithm specification.
Security evaluation of Keccak
Obviously, a very intensive public expert evaluation of Keccak took place during the SHA-3 competition – there is no need for us to quote from this in detail here. Our job as TUAK designers was to make sure that we benefited from the security of Keccak, and the expert and general public confidence in Keccak, with good efficiency and to provide the functionality we needed.

What about the stories on the internet about NIST weakening SHA-3?
There are suggestions flying around that NIST (maybe under influence from NSA) has deliberately weakened SHA-3 (or, as some have carelessly written, deliberately weakened Keccak). See for example https://www.cdt.org/blogs/joseph-lorenzo-hall/2409-nist-sha-3, http://yro.slashdot.org/story/13/09/28/0219235/did-nist-cripple-sha-3, https://www.schneier.com/blog/archives/2013/10/will_keccak_sha-3.html.

For anyone concerned about these claims, we refer to the Keccak team’s own response: http://keccak.noekeon.org/yes_this_is_keccak.html. Here they make it clear:

· firstly, that NIST have made no changes at all to Keccak itself, which remains exactly as the Keccak team designed it;

· second, that what NIST are doing is to propose choices of the parameters C and R (capacity and rate, as mentioned above) that give either a very strong or an extremely strong level of security, while not unnecessarily hampering performance; and that these proposed choices are all part of the original Keccak family proposal, again with no changes at all;

· although it’s true that the original SHA-3 submission used a larger value for the capacity C, this was done to meet an originally stated but frankly rather meaningless security target
.

In summary:

· TUAK is based on the Keccak design exactly as it was proposed originally by the Keccak team – this Keccak has not been “nobbled” by NIST, NSA or anyone else.

· TUAK uses parameter choices for Keccak that give an extremely high security level against all attacks.
A note on IPR

Submitters to the SHA-3 competition signed a statement that, amongst other text, promised: “Should my submission be selected for SHA-3, I hereby agree not to place any restrictions on the use of the algorithm, intending it to be available on a worldwide, non-exclusive, royalty-free basis.”
Padding bits
As well as the 3GPP-specified input fields, and the 512 zero bits dictated by our choice of capacity, we need to make up the 1600-bit input block to the Keccak permutation by including padding bits. (Note that these must be fixed padding bits, the same at the Authentication Centre end and the USIM end – we cannot use random padding bits here.) The choice of padding bits has little effect on security in our context. Again following discussion with the Keccak designers, we chose padding bits that we expect to align with NIST’s, to give the best possible chance that implementations developed for the NIST standards can be reused as much as possible for TUAK.
Flexible input and output sizes
As already mentioned, we wanted to accommodate the 256-bit subscriber key option in LTE (which is not yet widely used, but could become more popular in future). But also, bearing this 256-bit security level in mind, we felt that it was prudent also to allow for some possible future increases in the sizes of other 3GPP security parameters, such as the cipher key CK, the integrity key IK and the Message Authentication Codes. This was a nice-to-have, not a hard requirement on our TUAK design, but since 1600-bit Keccak can accommodate these extensions with no loss of efficiency, we have included them as options in TUAK. We have no immediate expectation that other 3GPP standards will incorporate these extended security parameter sizes, and indeed it may never happen – but the option is there if required.
Operator customisation
Milenage allows some customisation by each mobile operator. In particular, each operator needs to choose its own value of an “Operator Variant Algorithm Configuration Field” called OP. There are also other constants within the Milenage algorithm that can be varied if required. This operator customisation serves two main purposes:

· By making each operator's implementation different, we prevent USIMs for operators being interchangeable, either through trivial modification of inputs and outputs or by reprogramming of a blank USIM.

· By keeping some algorithm details secret, some attacks (such as side channel attacks like power analysis) become a little harder to carry out.
In similar vein, therefore, we include an Operator Variant Algorithm Configuration Field in TUAK, this time called TOP.

We also describe a very straightforward way in which TUAK could be modified to provide a higher security margin if ever required (if, say, some unexpected cryptanalysis emerged against Keccak). At the moment, though, Keccak is widely agreed to have a very high security margin, and we consider it unlikely that this further-strengthened version will be needed.

Conclusion
Keccak was selected as the winner of the SHA-3 computation after several years of intense scrutiny by the world’s cryptographic community. It is widely agreed by this expert community to have a very clear and well thought out security design, and a very high margin of security. Our TUAK design makes direct and straightforward use of Keccak, and clearly inherits Keccak’s security benefits. We have made a very strong choice of parameters from the Keccak function family, in line with what we now expect to be the strongest version that will be standardised by NIST. We consulted with the Keccak design team several times, including sharing our proposed final design with them, giving extra assurance that we (a) in no way fail to capture the security benefits of Keccak and (b) align with likely SHA-3-related implementations of Keccak as far as possible.

TUAK diagrams

� We refer here to 512-bit pre-image resistance for the 512-bit hash function. Conventional 512-bit hash function designs like SHA-512 do naturally achieve this target (unless “broken”) – which is probably why it was stated as a requirement in the original NIST call for submissions – but the sponge function design approach used by Keccak does not. Instead, a capacity of C bits leads to a security level of C/2 bits against all attacks, so C=512 implies a security level of 256 bits against all attacks, including 256-bit pre-image resistance. NIST recognised – and the Keccak team themselves repeatedly argued – that 256-bit pre-image resistance is strong enough for all purposes, and that setting C any higher than 512 just reduces performance without serving any real purpose.

